Lurie Children’s Research Projects

High-Temporal Resolution MR Tissue Phase Mapping in Children and Young Adults - Cynthia K. Rigby, MD

Goal
- To determine feasibility of T1m and its role in children and young adults

Initial Results
- T1m is technically feasible in age group of our study population
- The regional myocardial velocities measured by the T1m correlate with speckle tracking echocardiography

Clinical Impact
- To determine global and regional systolic and diastolic function in various cardiac pathologies
- To optimize therapy management based on myocardial velocities derived from T1m

Future Perspective
- To establish clinically reference standard in pediatric population
- To integrate T1m as a part of clinical CMR study

Feasibility of Ultrafast MRI for Evaluation of Pediatric Head Trauma - M. Ryan, A. Jaju, T. Alden

<table>
<thead>
<tr>
<th>Subject Area</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrafast MRI (UFT MRI)</td>
<td>Specifically designed to quantitatively assess the extent of brain injuries and utilizes a rapid T2-weighted imaging sequence (such as HASTE or SSFP) and was initially designed to evaluate ventricular size in motion analysis.</td>
</tr>
<tr>
<td>2D-CINE MRI</td>
<td>Encoder gradients are typically optimized for T1-weighted imaging, but can be used for T2-weighted imaging.</td>
</tr>
<tr>
<td>3D-CINE MRI</td>
<td>Typically optimized for T1-weighted imaging, but can be used for T2-weighted imaging.</td>
</tr>
</tbody>
</table>

Total scan time ~30 min, so can be done without sedation.
Gradient sequences can be added to increase sensitivity to hemorrhage, but are often motion-degraded.

Conclusions
- Total scan time ~30 min, so can be done without sedation.
- Gradient sequences can be added to increase sensitivity to hemorrhage, but are often motion-degraded.

T2 Quantification of Myocardial Perfusion - Cynthia K. Rigby, MD

Purpose
- Validation of T2 mapping in pediatric population
- Determination of normal pediatric T2 values
- Assess variability with age, heart rate, and myocardial insult
- Compare the normal myocardial T2 expected abnormal T2 values

Quantitative T2 map in feasible.
- Normal pediatric myocardial T2 values are reliable without variability by age, heart rate or location.
- Statistically significant differences exist between normal and abnormal myocardium.

Imaging Evaluation of Spondylolisthesis in the Pediatric Population - Comparative Analysis of MRI, CT, and SPECT - E. Ro, K. Ryan

Purpose
- Spondylolisthesis: a common cause of back pain in the pediatric population, in particular the athletic adolescent. Historically, CT and bone scan have been the methods used for the diagnosis of spondylolisthesis.
- Recently, MRI has been used to detect changes of stress reaction (marrow edema), which represents the earliest manifestation of pain sufferers.

Conclusions
- Comparative T2 mapping addressed well-known problems of T2-weighted imaging and offers potential for increased accuracy in detecting myocardial abnormalities.
- Normal T2 value can serve as a reference to quantitative abnormal myocardium.

T3 Mapping in Children and Young Adults - Non-invasive Detection of Myocardial Fibrosis - Cynthia K. Rigby, MD

Goal
- To establish clinical utility of T3 mapping in children and young adults

Where we are:
- Analyzed more than 50 patients with a wide spectrum of cardiac disease
- Preliminary results show T3 cutoff value of 956 ms to identify patients with cardiac disease

What more to do:
- To guide cardiac risk stratification and clinical decision making
- To explore the role of T3 mapping in a subgroup of population in children and young adults

Research Interests
- 1. Neuro Oncologic Imaging
- 2. Fetal MRI

Current Projects
- 1. Role of quantitative OAW imaging in characterization of orbital masses
- 2. Imaging correlates for tumor biology in a subset of patients
- 3. Treatment-related changes in ALL - Role of MRI screening
- 4. Educational exhibit - Imaging of sinus anomalies in pediatric patients

Evaluation of Simulation Education to Improve Performance of Fluoroscopic Upper Gastrointestinal Procedure in Infants with Bilious Emesis - Ellen C. Bemya, MD

Conclusions
- Residents who received drills and feedback with the model VR software had significantly higher scores on written test and improved evaluation
- Differences in the diagnostic accuracy scores for the residents with active training compared to the learning residents were close to significant

Measuring Human BAT Volume and Activity by Quantitative and Functional MRI - Jie Deng, PhD, MRI Physicist

Purpose
- To differentiate BAT tissue types using myelograms and quantitative MRI measurements
- To measure the tissue characteristics changes in BAT tissue type under the cold environmental conditions
- To compare the degree of BAT activity

Advanced Diffusion MRI for Differentiation of Pediatric Brain Tumors and Assessment of Treatment - Jie Deng, PhD, MRI Physicist

Conclusion
- We are comparing findings in patients with MRI and CT/CT bone scan to evaluate:
 - The sensitivity and specificity of the MRI for identifying patients who differ in primary tumor location and with the CT
 - The prevalence of other pathologies identified by MRI (such as disc disease) that is occult by CT bone scan

3. Other Researches
- The first study for the disease and have various abnormalities
- Cardiac ischemic OBQF ICA qualitative & quantitative (7/15/73) imaging, embolization, free breathing cine (C) cardiac (4D-MRA), post contrast delayed imaging optimization, cine perfusion, etc.
- Cardiac ischemic OBQF ICA quantitative (non-contrast MRA/MRA/VCT) imaging, embolization, QCA, QSD, MRA, etc.
- Cardiac ischemic OBQF ICA qualitative & quantitative (7/15/73) imaging, embolization, free breathing cine (C) cardiac (4D-MRA), post contrast delayed imaging optimization, cine perfusion, etc.
- Cardiac ischemic OBQF ICA quantitative (non-contrast MRA/MRA/VCT) imaging, embolization, QCA, QSD, MRA, etc.

Alok Jaju, MD

Andra P. Popescu, MD

Research Interests
- 1. Assessment of Two Different MRI Techniques: Standard Dynamic Gradient Echo with Extracellular Contrast Agent versus Gradient Echo with Blood Pool Contrast Agent
- To compare imaging quality of non-contrast MRA (NCP-MRA) in our pediatric and young adult population.
- To determine the feasibility of using a contrast agent to enhance the visibility of small or subtle lesions.

Conclusions
- Standard Dynamic Gradient Echo with Extracellular Contrast Agent is superior to Gradient Echo with Blood Pool Contrast Agent in the visualization of various anatomical structures.

Jennifer Nicholas, MD

1. Efficacy of a Year-Long Call Preparation Curriculum delivered by iPads
- Paper in progress
- Nicholas JS, Jaffe J.

2. Efficacy of Global Health Programming on Self-Reported Global Health Competencies
- Data collected in progress
- Nicholas JS, Jaffe J.

3. Can the Choice of Nomogram Used to Interpret Sonographic Renal Measurement in Children with Dysmorphology affect Clinical Management?
- Paper in progress
- Nicholas JS, Jaffe J.

4. Effect of Teamwork on Decreasing Length of Stay in Newborns with Neonatal Intensive Care
- Paper in progress
- Nicholas JS, Jaffe J.

5. Fracture Patterns in Patients with Osteopenia
- Paper in progress
- Nicholas JS, Jaffe J.

Christina Sammet, Ph.D., DABR

Medical Physicist, Radiation and Laser Safety Officer

1. An imaging strategy for lower dose cardiac CTA in infants
- To achieve ultra low dose multi-detector cardiac angiography utilizing a low x-ray tube voltage (LVP) technique

2. Improving Neurologic Outcome Measurement for Interventional Research in Children in India
- To improve neuroimaging research capacity at the University of the University of Benin, Nigeria and a research collaboration from the children’s hospital and stroke

3. Radiation dose optimization for pediatric neuro-interventional procedures
- To promote dose performance, low dose, and dosimetric image quality in pediatric neuro-interventional studies and neurointerventional procedures